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Abstract— Multi-task imitation learning (MTIL) has shown
significant potential in robotic manipulation by enabling agents
to perform various tasks using a unified policy. This simplifies
the policy deployment and enhances the agent’s adaptability
across different contexts. However, key challenges remain, such
as maintaining action reliability (e.g., avoiding abnormal action
sequences that deviate from nominal task trajectories), distin-
guishing between similar tasks, and generalizing to unseen sce-
narios. To address these challenges, we introduce the Foresight-
Augmented Manipulation Policy (FoAM), an innovative MTIL
framework. FoAM not only learns to mimic expert actions but
also predicts the visual outcomes of those actions to enhance
decision-making. Additionally, it integrates multi-modal goal
inputs, such as visual and language prompts, overcoming the
limitations of single-conditioned policies. We evaluated FoAM
across over 100 tasks in both simulation and real-world settings,
demonstrating that it significantly improves IL policy per-
formance, outperforming current state-of-the-art IL baselines
by up to 41% in success rate. Furthermore, we released a
simulation benchmark for robotic manipulation, featuring 10
task suites and over 80 challenging tasks designed for multi-
task policy training and evaluation. See project homepage
https://projFoAM.github.io/ for project details.

I. INTRODUCTION

One of the main goals in robot learning is to develop a
general-purpose agent capable of performing various tasks
based on user commands. For manipulation tasks, multi-
task imitation learning (MTIL) serves as a key approach
that enables agents to learn different tasks from expert
demonstrations, eliminating the need for complex, hard-
coded solutions or reward functions and leading to efficient
and generalizable policies. However, in practical settings,
achieving both generalization and reliability in MTIL re-
mains a key challenge [1]. The agent must develop task-
agnostic skills to generalize to new tasks and environments,
while also capturing task-specific details to ensure reliable
execution for individual tasks [2], [3].

Previous research has shown that task adaptation in MTIL
can be achieved by incorporating goal conditions into multi-
task policy training [4]–[11]. However, the low reliability of
multi-task policies remains a persistent challenge. Existing
MTIL policies that align robotic actions with expert actions
based on goal conditions often fail to reason about these
ambiguities and variations in expert demonstration data,
severely impacting the agents’ performance on individual
tasks. Meanwhile, single-goal conditioned policies [9], [10],
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[12]–[17] come with its own limitations. For instance, poli-
cies conditioned on language instructions struggle to general-
ize to unseen tasks without data augmentation. While policies
conditioned on goal images offer fine-grained guidance,
they frequently encounter ambiguities in task activation and
necessitate human intervention to accurately acquire and
interpret the goal images. For instance, when the robot
was tasked with placing an object into a multi-compartment
locker, the resulting goal image (an object that was in the
initial image disappeared in the goal image) was ambiguous
due to occlusion, making it impossible to determine which
specific compartment the object was placed in (see Figure 4).

In this paper, we introduce the Foresight-Augmented Ma-
nipulation Policy (FoAM), a novel multi-task imitation learn-
ing policy designed to generate fine-grained actions while
considering their consequences. This approach is inspired by
how humans perform tasks, refining actions by comparing
expected outcomes with the intended goal until the desired
result is achieved [18]. Similarly, FoAM processes observa-
tion inputs, task prompts, and goal images to generate robotic
actions and predict embeddings that represent the outcomes
of those actions. During training, we apply an action loss
to refine the policy’s behavior and introduce a foresight
loss to ensure the policy accounts for the consequences of
its actions. This foresight allows the agent to reason about
its action across diverse tasks, and handle the ambiguities
and variations in expert demonstration data, leading to more
forward-looking and precise action. Additionally, FoAM
leverages a fine-tuned vision-language model (VLM) [19] to
autonomously generate goal images, enhancing the agent’s
autonomy and improving its ability to generalize to unseen
tasks and scenarios. Our approach demonstrates significant
effectiveness, with evaluations across more than 100 tasks in
both simulation and real world. FoAM outperforms state-
of-the-art baselines, achieving an increase in success rate
by up to 41% in success rate. Our main contributions are
summarized as follows:

1) We introduce the Foresight-Augmented Manipulation
Policy (FoAM), a novel multi-task IL policy with the
ability to reason about the consequences of its actions.

2) We integrate a Vision-Language Model (VLM) as the
Goal Imagination Module for FoAM, fusing language
prompts with goal images, enhancing its ability to
generalize to unseen tasks and scenarios.

3) We opensource a simulation benchmark with 10 task
suites and over 80 tasks, alongside a real-world dataset
comprising 14 tasks. We demonstrate that FoAM
achieves state-of-the-art performance on these tasks.
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II. RELATED WORK

Goal-Guided Learning for Robotic Manipulation. In
recent years, significant progress has been made in single-
task learning policies [20]–[24]. However, to enable a wider
adoption, intelligent robots must be equipped with the ability
to adapt to diverse tasks and complete them effectively.
Among current MTIL approaches, language-guided manip-
ulation policies utilize large-scale datasets to achieve task
generalization, or apply data augmentation techniques, such
as vision generation models, to modify backgrounds and
manipulated objects, enabling generalization across more
tasks and scenarios with limited data [6]–[10], [25]–[31]. De-
spite the promising initial success, we found that language-
conditioned policies often struggle with unseen tasks without
sufficient data or extensive additional data augmentation.
In parallel, other approaches have introduced goal images
as task conditions [10], [12], [13], [32]–[34]. Compared to
language inputs, images encapsulate richer information, en-
abling stronger generalization capabilities, and even allowing
agents to perform zero-shot tasks [13]. However, goal images
are susceptible to task ambiguity, where visually identical
outcomes can be produced by different tasks, causing incor-
rect task activation.

Moreover, the need to collect goal images from hu-
mans reduces agent autonomy. To leverage the strengths
of both images and language, recent work has explored
multi-modal prompts [14], [15], [34]–[36]. These methods
extract entities from both language and image prompts,
then compose a multi-modal prompt embedding based on
predefined templates. In contrast, our approach leverages
vision-language models to directly generate a goal image
with high-dimensional semantic information. This generated
goal image, along with the task prompt, is processed to
further infer actions and predict future states. By doing so,
our method addresses the limitations of goal-conditioned
policies that rely solely on language prompts, goal images,
or predefined templates.

Agents with Vision Language Models. In recent years,
Vision-Language Models (VLMs) have been introduced to
robotics [30], [36]–[43], enabling more complex visual rea-
soning and multimodal tasks. Meanwhile, in the community
of image editing, VLMs also demonstrated the ability to
understand language prompts, edit real-world images and
produce highly realistic visual effects [33], [44]. [14], [33],
[45]–[47] further validates that edited images generated via
VLMs can be interpreted by robotic agents, where the
generated goal images are directly used as a task activation
condition. In contrast, we integrate VLMs seamlessly into
our framework not only during the inference stage, but also in
model training. Specifically, the VLM-generated goal images
serve as the “labels” to compute the reconstruction loss for
the foresight augmentation module (Section III-C), coupling
the action policy learning and action result prediction.

III. METHOD

We seek to develop an imitation learning policy with
strong generalization and robustness, empowering the agent

to effectively complete a variety of tasks. To achieve this,
we introduce FoAM, a novel multi-modal goal-conditioned
policy learning framework. In the following sections, we will
provide an overview of the FoAM in III-A, detail the fine-
tuning of a cutting-edge visual-language model to generate
goal images for FoAM in III-B, propose the foresight-
augmented module in III-C, and introduce the implemen-
tation details of FoAM in III-D.
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Fig. 1: Training and inference pipelines of FoAM. The inputs
remain the same during both training and inference. During training,
actions and their consequences are predicted and compared with
ground truth to update FoAM’s parameters. During inference, the
trained policy predicts the action ât.

A. Pipeline Overview

The pipeline of FoAM is illustrated in Figure 1. FoAM is
a transformer-based [48] policy that inherits the architecture
of prior works [20] and is trained as a conditional variational
autoencoder (CVAE) [49], [50]. The process begins with
the user providing a task prompt gl to the agent based on
the current observation, which is then fed into FoAM as a
language goal condition through a pre-trained text encoder
[51]. Concurrently, the task prompt, such as Put eggplant
into the green bowl, is input into the Goal Imagination
Module along with the initial observation oi. The generated
imaginary goal image or human collected real goal image gi
serves as an additional condition. By integrating the agent’s
proprioception jt, visual observations ot, and the latent style
variable z encoded from the action and joint data, the multi-
goal conditional policy πθ(ât:t+k|ot, jt, gi, gl, z) is learned
through gradient descent during training. During inference,
action chunks are predicted and robust actions are produced
through temporal aggregation [20].

B. Fine-tuned Goal Imagination Module

We chose InstructPix2Pix (Ip2p) [19] as our goal imag-
ination module, utilizing approximately 20,000 pairs of
training data. Of these, 16,000 pairs were derived from the
cleaning robot expert demonstrations provided by RT-1 [6],
[7], [25]. In this process, the first and last frames of the
demonstrations were used as the original and edited images,
respectively, with the corresponding task name serving as the
instruction. Given that many of the demonstration datasets



contained perturbations in the final frames caused by robot
arm movements, we undertook a detailed data cleaning
procedure to remove noise and ensure the training data
quality. Additionally, we incorporated over 4,000 data pairs
sourced from our own simulation and real-world datasets
(see Section IV-A for details). We fine-tuned the model for
500 epochs on a single NVIDIA H100 GPU, a process that
required approximately 3 days. During the image generation
stage, with the model weights pre-loaded, processing each
initial observation of size 480×640×3 took about 4 seconds.
Figure 2 presents a selection of initial observations alongside
their corresponding imagined goal images, captured during
VLM-FoAM joint inference experiments (see Section IV-C
for details) in real-world. These results highlight the model’s
ability to generate realistic and contextually visual effects
based on the given initial observations and task prompts.
We anticipate that these imagined visual scenes will help
address the limitations of single-goal conditional policies,
and allow the robot autonomously determine goal conditions,
improving the robot’s generalization performance.
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Fig. 2: Inference demonstration of the fine-tuned goal imagination
module. The leftmost image illustrates the initial observation, while
the next four images represent the imagined goal images generated
based on the initial observation and the task prompt provided at the
top. Please visit the project homepage for more examples.

C. Foresight-augmented Module

Humans possess exceptional cognitive abilities when it
comes to understanding and interacting with external objects
and events. This cognitive prowess enables individuals to not
only perceive the current environment but also to anticipate
future outcomes based on their actions. When tasked with
a specific objective, humans often mentally envision the
goal image even before initiating the task. Inspired by this
human capability, we developed a foresight-augmented (FA)
module to endow agents with a similar foresight mechanism.
The FA enables the agent to concurrently comprehend both
the actions it takes and the subsequent outcomes these
actions will produce. By integrating this foresight into the
agent’s decision-making process, we significantly improve
the agent’s overall manipulation task performance.

We train FoAM as a CVAE, utilizing an encoder similar
to those in [9], [20], [22], [52] to generate the latent variable
z ∼ qϕ(z|at:t+k, jt). The decoder is defined as policy
πθ(ât:t+k, f̂t:t+k|ot, jt, gi, gl, z), which predicts a k × n-
dimensional action chunk ât:t+k and foresight sequence
f̂t:t+k based on current observation and conditions, where k
represents the hyperparameter chunk size and n denotes the
dimension of the agent’s controlled action space. To enhance
the agent’s ability to interpret and react to extended temporal
contexts, we strategically increase the value of k, thereby
broadening the agent’s vision of foresight. This adjustment is
particularly important in the context of the multi-task dataset,

where the length of each expert demonstration varies. For
shorter tasks, we extend the data by replicating the final
frame up to the maximum time step T of all demonstrations,
setting k to be close to T . As the action chunk is being pre-
dicted, the FA module envisions k potential foresight scenes,
and selects the frame ĝi = f̂t:t+k[k − t] that is temporally
aligned with the goal image. This selected frame is then
compared against the goal image gi to compute the foresight
loss Lforesight. This process successfully emulates the strong
cognitive abilities humans exhibit when approaching tasks,
and we demonstrated in experiments that the FA module
significantly enhances the agent’s task performance.

D. FoAM Policy Implementation

FoAM is designed as a transformer-based policy with
sufficient capacity to predict specific sequences by effectively
integrating sequence information from the input. FoAM
is implemented using an ACT-like architecture [20] with
the CVAE framework. The language conditional embedding
is obtained by pre-training the language encoder [51] to
produce a 384-dimensional feature, which is subsequently
projected to 512 dimensions through an MLP. Visual obser-
vations of size 480 × 640 × 3 are encoded using ResNet18
[53], with a FiLM conditional layer [54] applied to each
view encoding, ensuring robust task activation performance
in multi-task scenarios [9]. The visual observations are finally
transformed into a (300×n)× 512 feature sequence, where
n denotes the number of views used. The goal image gi is
encoded by the pre-trained ResNet18, producing a 300×512
feature, and remains fixed during training without parameter
updates. The latent variable z is obtained with a 4-layer
transformer encoder and projected to 512 dimensions. Pro-
prioceptive input jt is projected to 512 dimensions through
an MLP. The CVAE decoder consists of a 4-layer transformer
encoder and a 7-layer transformer decoder. The input feature
dimensions for the transformer encoder are (303+300×n)×
512. The transformer encoder fuses features from different
modalities, and the decoder outputs the predicted action
chunk ât:t+k and k envisioned foresight scenes f̂t:t+k.

The FoAM training process, which incorporates the FA, is
outlined in Algorithm 1. During training, we use L1 loss to
compute the action loss Laction and Huber loss to compute the
foresight loss Lforesight, along with a KL divergence term Lreg
regularizing the CVAE encoder. These losses are weighted by
α, β, and γ; throughout our experiments, the weight values
set to 1, 2, and 10, respectively.

During inference, the FA module is discarded, and the pol-
icy at this stage is represented by πθ(ât:t+k|ot, jt, gi, gl, z).
Based on the current observations and goals, the action chunk
ct = ât:t+k is predicted. Following prior action chunk-
based policies [9], [10], [20], we apply exponential temporal
aggregation to produce smoother motion trajectories. Unlike
previous work, we introduce the hyperparameter r to elimi-
nate the equality constraint on chunk size k and the temporal
aggregation range r. This is particularly crucial for deploying
FoAM in real-world scenarios, as it allows flexibly adjusting
the smoothing range according to the characteristics of dif-
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ferent tasks, and optimizing task performance. The inference
code is shown in Algorithm 2. There are approximately
160M parameters in the training and around 80M in the
inference.
Algorithm 1 FoAM Training

Require: Expert demo D, maximum episode length T ,
chunk size k (k ≈ T ), and loss weights α, β, γ

1: Each episode includes at, jt, ot, gl and gi, representing
the action, agent proprioception, visual observation at
time t, task prompt, and goal image, respectively.

2: Init CVAE encoder qϕ(z|at:t+k, jt)
3: Init CVAE decoder πθ(ât:t+k, f̂t:t+k|ot, jt, gi, gl, z)
4: for each batch i = 1, 2, . . . do
5: Random sample at:t+k, jt, ot from D
6: Encode latent variable z from qϕ(z|at:t+k, jt)
7: Predict actions ât:t+k and foresight f̂t:t+k using de-

coder πθ(ât:t+k, f̂t:t+k|ot, jt, gi, gl, z)
8: Laction = L1(ât:t+k, at:t+k)
9: Lforesight = Huber(ĝi, gi), where ĝi = f̂t:t+k[k − t]

10: Lreg = DKL(qϕ(z|at:t+k, jt) ∥ N (0, I))
11: Update CVAE parameters θ and ϕ using ADAM opti-

mizer with total loss L = αLaction +βLforesight +γLreg
12: end for

Algorithm 2 FoAM Inference

Require: trained policy πθ(ât:t+k|ot, jt, gi, gl, z), where
z = 0, maximum inference time step L, chunk size k,
temporal aggregation range r and weight coefficient λ.

1: Init an action buffer B[L,L + k, ∗], where B[t] stores
action chunk ât:t+k.

2: for time step t = range(L) do
3: Predict ât:t+k with πθ

4: Add ât:t+k to buffer B[t, t : t+ k]
5: Extract temporal aggregation array At = B[−r :, t]
6: Get ât =

∑
i wiAt[i]/

∑
i wi, with wi = exp(−λ ∗ i)

7: end for

IV. EXPERIMENTS

Our experiments focus on investigating the following
questions:
(a) How does FoAM perform, and how does it outperform

the baseline across multiple tasks?
(b) What advantages does FoAM provide compared to a

single goal-conditioned policy?
(c) How effectively does FoAM handle unseen tasks with-

out any data augmentation?
(d) When FoAM and the VLM are used jointly during

inference, how does FoAM perform differently when
guided by an imagined goal image versus a real one?

(e) A robust imitation learning policy is essential for
achieving sustainable scalability. How well does FoAM
respond to external disturbance?

A. Data Collection

FoAM Benchmark: We developed a simulated dual-
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Fig. 3: Snapshots of each scenario in the FoAM benchmark.
The middle snapshot provides an overview of the dual-arm robot
we developed in MuJoCo [55]. The tasks in the benchmark are
categorized into five groups for performance analysis: pink for dual-
arm tasks, yellow for cabinet-based tasks, green for color-block-
based tasks, orange for locker-based tasks, and gray for other tasks.
The objects in these scenarios are sourced from [56]–[59]. The
FoAM benchmark offers high-degree-of-freedom simulation suites.
Tutorials for creating custom environments are available on the
project homepage.

Insert the Test Tube into 

Holes

Pick Test Tubes from the 

Rack 

Put Fruits into the Green 

Bowl 

Place the Bitter Melon on 

Locker Layers

Fig. 4: Snapshots of the real-world multi-task environment are
captured from static externally mounted Orbbec Femto Bolt camera.
We use a UFACTORY xArm 7 robot, a parallel-jaw gripper, a static
externally mounted Orbbec Femto Bolt camera, and a wrist mounted
Intel Realsense D435 camera, to evaluate multi-task policies across
4 real scenarios, comprising a total of 14 tasks. The tasks include:
picking test tubes from the rack, placing fruits into the green bowl,
inserting a test tube into holes (each with four subtasks), and placing
the bitter melon on locker layers (with two subtasks). For videos
and more details, please refer to the project homepage.

arm robotic system, with each arm possessing 6 degrees
of freedom (DoF) and a 1-dof parallel-jaw gripper, closely
replicating a commonly used UR3e robot. This system was
implemented with the MuJoCo physics simulation engine
[55], and we have open-sourced 10 distinct multi-task suites
involving this robot. A total of 86 simulation tasks were
designed, encompassing a broad range of practical skills,
such as picking, moving, pushing, placing, sliding, inserting,
opening, closing, and transferring [25]. Figure 3 provides
an overview of snapshots from each multi-task environment
along with their corresponding scenario names. Each multi-
task simulation environment includes varying numbers of
subtasks. For example, the Open Cabinet Drawer scenario
consists of three subtasks, with a general task prompt “Open
the cabinet bottom drawer”, where “bottom” can be replaced
with middle or top. The subtasks in the scenarios Transfer
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Policy Model
size

Dual-Arm
(12 tasks)

Block-based
(40 tasks)

Cabinet-based
(14 tasks)

Locker-based
(8 tasks)

Others
(8 tasks)

Unseen Tasks
(4 tasks)

BAKU [10] 11M 31% 47% 52% 25% 17% 0
MT-ACT [9] 86M 33% 71% 50% 32% 50% 0
Gimg-ACT 84M 45% 39% 52% 23% 28% 45%
FoAM (Ours) 86M 86% 91% 75% 85% 71% 66%
FoAM w/o FA 86M 36% 81% 55% 51% 49% 11%

TABLE I: Performance of multi-task policies in our benchmark. In the table, the first column lists the names of the policies included in
the evaluation, and the second column provides the model size of each policy. The subsequent six columns report the average success rates
(See project homepage for the evaluation metrics of each task) of the respective policies across different task categories: dual-arm tasks,
color block-based tasks, cabinet-based tasks, locker-based tasks, other tasks (including “Put something in the pan” and “Insert something
in the basket”), and unseen tasks.

Policy Scenario
I

Scenario
II

Scenario
III

Scenario
IV

Unseen
Task

MT-ACT 6/40 10/40 10/40 10/20 0/10
Gimg-ACT 7/40 8/40 11/40 - 1/10
FoAM (Ours) 11/40 11/40 17/40 14/20 3/10
FoAM w/o FA 7/40 13/40 13/40 12/20 1/10

TABLE II: The success rate of multi-task policies in real-world
scenarios. Scenario I corresponds to the task: “Pick the first (second,
third, forth) test tube from the rack.” Scenario II corresponds to:
“Insert the test tube into the first (second, third, forth) hole.”
Scenario III involves: “Put the eggplant (bitter melon, peach,
tomato) in the green bowl.” Scenario IV refers to the task: “Place
the bitter melon on the bottom (middle) layer of the locker.”

Color Blocks and Dual Arm: Put Stuff to the Cabinet Bot-
tom Drawer are dual-arm tasks, while the remaining suites
involve single-arm tasks. The FoAM benchmark is a high-
degree-of-freedom simulation data generator, enabling users
to customize textures, colors, and even action trajectories for
tasks. This tool facilitates the rapid generation of high-quality
simulation data tailored to user requirements. We expect that
FoAM contributes to the development of multi-task policies
in complex environments.

Simulation Dataset: We generate 50 expert demonstra-
tions for each task to evaluate the performance of FoAM ver-
sus other multi-task policies. Before recording each demon-
stration, objects in the scene are randomly initialized within
a specified range. The dataset is recorded at a frequency
of 50 Hz, capturing the robot’s proprioceptive data, action
sequences, and visual observations. To simulate a real-
world scenario where the agent interacts with users, visual
observations are captured solely through a head-mounted
camera with a resolution of 480×640 pixels. For the single-
arm tasks, even though one of the robotic arms remained
inactive, we still recorded its action and proprioceptive data.
As a result, the controlled action space n of the dataset is
unified to 14, allowing us to accommodate all tasks within
a single IL policy.

Real World Dataset: Our robot system is composed of
a UFACTORY xArm 7 robotic arm, a parallel-jaw gripper,
a static externally mounted Orbbec Femto Bolt camera, and
a wrist mounted Intel Realsense D435 camera. To evaluate
the performance of FoAM in real-world applications, we
designed 14 tasks across four multi-task environments. The 4
real-world scenarios are illustrated in Figure 4. The dataset
was collected using a custom-built, low-cost teleoperation

platform inspired by Gello [60]. The leading arm, which
a teleoperator directly controls, includes eight Dynamixel
XL330-M288-T servos and custom 3D-printed connectors
(see project homepage for details). For each task, we col-
lected 50 expert demonstrations, with the objects randomly
placed on the table before data collection. The randomiza-
tion was constrained within a rectangular area measuring
approximately 50×60 cm. The final dataset comprises RGB
data from two cameras with a resolution of 480×640, along
with joint states from both the leading and following arms,
recorded at a frequency of 30 Hz.

B. Experiment Results

We compare our approach against state-of-the-art open-
source multi-task policies, including Multi-task Action
Chunking Transformer (MT-ACT) [9] and BAKU with a
deterministic policy head [10], both of which utilize only
language prompts. Additionally, we use ACT with goal
images (Gimg-ACT) as a baseline guided solely by the
goal image. For multi-modal prompting, ACT with both
language prompts and goal images serves as a baseline
policy, which can also function as an ablation policy to assess
the effectiveness of the FA module (FoMA w/o FA).

To facilitate statistical analysis, all scenarios in the FoAM
benchmark were categorized into five distinct task groups.
We conducted 50 test trials for each subtask, and the average
success rates of the different strategies across these task
categories are presented in Table I.

Compared to all the policies evaluated, FoAM achieved the
highest success rate across all five task categories. Notably,
in the dual-arm task, FoAM outperformed the second-best
policy by 41% in success rate, with varying degrees of
improvement observed in the other task categories as well.
To further assess the generalization capabilities of these
policies, we designed 4 unseen tasks by modifying the
Scenario Pick Color Blocks: green blocks were changed to
purple, and blue blocks to black. The language-based MT
policies were unable to complete these unseen tasks, while
policies incorporating goal images demonstrated varying
levels of generalization. We think the reason is language-
based policies rely on text embeddings to activate conditional
responses, classifying tasks based on broad categories. This
approach leaves the agent struggling when faced with unseen
task prompts, as it lacks the flexibility to adapt to unseen
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tasks. In contrast, policies guided by goal images employ a
more fine-grained classification approach, capturing detailed
information from individual demonstrations. This enables
the policy to focus more precisely on the differences be-
tween visual observations and goals, enhancing its ability
to tackle unseen tasks. However, using a single goal image
also presents limitations. In block-based scenarios, such as
Transfer Color Blocks and Pick Color Blocks, where the
initial and goal images are identical, this similarity can
trigger the incorrect activation of the conditional policy.
As a result, the Gimg-ACT performs significantly worse in
these tasks compared to other policies. FoAM, by fusing
both language and image inputs, provides stable activation
conditions for each task while retaining the generalization
advantages offered by goal images. When enhanced with FA,
FoAM’s task performance is significantly improved.

Based on the performance of MT policies in FoAM
benchmark, we strategically selected MT-ACT, Gimg-ACT,
FoAM, and FoAM w/o FA for real-world deployment. In
the real-world experiments, for each scenario, we randomly
initialized ten different locations and sequentially executed
the tasks associated with each scenario. The performance of
these multi-task policies in real-world scenarios are summa-
rized in Table II.

Each policy experienced a notable performance decline
when deployed in real-world environments. We attribute
this to the inherent randomness of human demonstrations
and the variability present in real-world conditions, both of
which complicate the processes of learning and inference.
Furthermore, unlike the experimental environments used in
prior works [9], [20], our scenarios closely mirror real-
world robotic applications. Specifically, we utilized only two
perspectives—head and wrist—and the manipulated objects
were randomly initialized within a large workspace, increas-
ing the challenge for the agent to complete tasks effectively.
Scenarios I and II demand higher precision from the policy,
as the test tubes and racket holes are closely located, making
it sensitive to robot misoperations. In Scenario III, the 4
fruits and the green bowl were placed randomly, resulting
in complex visual observations. In contrast, Scenario IV
was relatively simpler for robot execution, involving larger
manipulated objects and a well-defined goal space. However,
this scenario also introduced goal image ambiguity, leading
it difficult for Gimg-ACT to reliably activate specific tasks.
Notably, FoAM demonstrated the best performance across
all 4 scenarios. To assess policy performance on unseen
tasks, we replaced the eggplant in Scenario III with a
carambola. MT-ACT struggled achieving any success in the
new tasks without data augmentation; in contrast, the other
three goal-conditioned policies exhibited varying degrees of
generalization, and FoAM achieves the highest success rate.

C. VLM-FoAM Joint Inference

To improve the agent’s autonomy in acquiring the goal
image, we conducted a joint inference experiment in Scenario
III. Two policies were employed using data exclusively from
Scenario III: FoAM, trained with the last frame of demon-

Policy Bitter Melon Eggplant Peach Tomato

FoAM 5/10 7/10 2/10 2/10
VLM-FoAM 7/10 7/10 3/10 3/10

TABLE III: Performance comparison of the FoAM and VLM-
FoAM policies in Scenario III. The first column lists the evaluated
policies, while the last four columns present the success rates for
operating each corresponding object in Scenario III.

stration and evaluated with real goal images, and VLM-
FoAM, trained and evaluated with goal images generated
by VLM. The results of this experiment are shown in Table
III.

Due to their shapes, Peach and Tomato are difficult for
the robot to grasp and are prone to rolling, often leading
to task failure. In contrast, Bitter Melon and Eggplant are
more easily grasped. Our experiments showed that VLM-
FoAM demonstrated more robust performance. We attribute
this to the deep semantic information retained in the images
generated by VLM, which helps prevent the model from
overfitting when working with small datasets. Furthermore,
the goal images generated by VLM maintain a consistent
overall style. This style uniformity ensures that goal images
generated at different times share similar features, enhancing
the robot’s ability to adapt to dynamic real-world conditions,
thereby improving task activation reliability. Additionally,
with the introduction of VLM, the agent can autonomously
and efficiently acquire the goal image, with a 480×640 pixel
goal image being obtained in an average of 4 seconds.

D. Robustness Analysis

We conducted an in-depth exploration of FoAM, focusing
on two key aspects: external disturbance, and reactiveness.
Relevant videos can be viewed on the project homepage.

External Disturbance. Despite the introduction of addi-
tional objects to disrupt the operation process, the robot was
able to complete the task without significant difficulties.

Reactiveness. During the task execution, we forcibly
removed the object from the gripper. In response, the robot
exhibited the ability to attempt re-grasping the object and
ultimately complete the task.

V. CONCLUSION AND FUTURE WORK

In this work, we introduced FoAM, a novel multimodal
goal-conditioned policy designed to enhance the performance
of multi-task policies and address the limitations of single
goal-conditioned approaches. Inspired by human behavior,
FoAM improves agent performance by imitating expert ac-
tions while simultaneously considering the visual outcomes
of those actions. In our published FoAM-benchmark and
across real-world scenarios, FoAM achieved improvements
of up to 41% in success rate compared with previous
methods. However, FoAM exhibited certain limitations in
real-world Scenarios I and II, which involve high precision
requirements. To address this, we will explore to refine long-
horizon tasks by generating fine-grained intermediate goal
images to serve as guidance. By leveraging these intermedi-
ate visual states, we seek to reduce cumulative errors during
operations and improve the agent’s execution accuracy.

https://projFoAM.github.io/
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